0-fiber

📖 Block, squash, and lift formal definitions

Let n1 and m1.

Definition: Block

A block of dimension n is a tuple

B=(P,s,b)

where:

P={(p0,,pn1)Nn|pi=bi+xi, 0xi<si i}

We denote the set of all blocks of dimension n by Bn.


Definition: squash

The squash operation is a function

squash:BnB1

Given

B=(P,s,b)Bn

with s=(s0,,sn1), b=(b0,,bn1)

s=(S), where S=i=0n1si b0=i=0n1bij=i+1n1sj k=i=0n1(pibi)j=i+1n1sj

Then

P={b0+k|(p0,,pn1)P}

Finally,

squash(B)=(P,(S),(b0))

Definition: lift

The lift operation is a function

lift:B1×NmBm

defined when

i=0m1si=S

Given

B=(P,(S),(b0))B1

and a new shape

s=(s0,,sm1)Nm bi=(b0modj=im1sj)j=i+1m1sj

for each i=0,,m1

yi=((kb0)modj=im1sj)j=i+1m1sj

and then

P={(b0,,bm1)+(y0,,ym1)|kP} s=(s0,,sm1)

Finally,

lift(B,s)=(P,s,(b0,,bm1))