2 - Subgroups

---dg-publish: true---

Subgroup

let G be a group, then a subset H of G is a subgroup of G if it a group, inheriting the operator from G. In such a case we write HG. if HG, we write H<G.

necessary and sufficient conditions for subgroups

let G be a group, H, a subset of G is a subgroup if and only if the following properties hold:

  1. The identity eG is also in H.
  2. x,yH implies that xyH (H is closed under the product operator inherited from G).
  3. xH implies that x1H (H is closed under inverses).

proof: if H is a subgroup, 1,2,3 follow by definition. Now suppose HG. Then the above three conditions guarantee that H is a group, with associativity following from inheriting the operator from G.


A simpler condition to guarantee subgroups

let G be a group, and H a subset of G. then H is a subgroup if and only if H is non empty, and x,yH implies xy1H.

proof: Suppose H was a subgroup of G. then obviously, H is non empty (it at least contains e, the identity) and x,yH implies xy1H. Now, suppose H was a non empty subset of G, and that x,yH implies xy1H. We will show that eH: notice that xH implies xx1=eH. Now we show that H is closed under inverses: Since eH, for any element xH, ex1=x1H. Finally, we will show that H is closed under products: Suppose x,yH. Then y1H, (as shown earlier). Hence x(y1)1H. Hence xyH. Therefore by necessary and sufficient conditions for subgroups H is a subgroup of G.


The intersection of subgroups

Let G be a group, and H,K be subgroups of G. Then, HK is a subgroup of G.

proof: since e is in both H and K, HK is non empty. Suppose x,yHK . Then x,y is in both H and K. Therefore, xy1 is in both H and K. Hence, xy1HK. See :A simpler condition to guarantee subgroups.


The intersection of finitely many Subgroups is a subgroup

Let H1,H2,Hn All be subgroups of a group G. Then, i=1nHi is a subgroup of G.

Proof Outline

Use The intersection of subgroups with a natural induction argument.


Finiteness with product closure are sufficient conditions for a subgroup

Let H be finite subset of a group G, such that the identity eH. If x,yH implies xyH, then H is a subgroup of G.

An intuition for the above idea:

<ns0:svg xmlns:ns0="http://www.w3.org/2000/svg" x="0" y="0" width="661.6000366210938" height="460.20001220703125" style=" width:661.6000366210938px; height:460.20001220703125px; background: transparent; fill: none; "> <ns0:svg class="role-diagram-draw-area"><ns0:g class="shapes-region" style="stroke: black; fill: none;"><ns0:g class="composite-shape"><ns0:path class="real" d=" M111.4,214.8 C111.4,106.66 199.06,19 307.2,19 C415.34,19 503,106.66 503,214.8 C503,322.94 415.34,410.6 307.2,410.6 C199.06,410.6 111.4,322.94 111.4,214.8 Z" style="stroke-width: 1; stroke: rgb(52, 61, 85); fill: none; fill-opacity: 1; stroke-opacity: 1;" /></ns0:g><ns0:g class="composite-shape"><ns0:path class="real" d=" M200,185.29 C200,183.23 202.91,181.57 206.5,181.57 C210.09,181.57 213,183.23 213,185.29 C213,187.34 210.09,189 206.5,189 C202.91,189 200,187.34 200,185.29 Z" style="stroke-width: 8; stroke: rgb(0, 0, 0); stroke-opacity: 1; fill: none; fill-opacity: 1;" /></ns0:g><ns0:g class="composite-shape"><ns0:path class="real" d=" M378,100.3 C378,102.12 380.59,103.6 383.77,103.6 C386.96,103.6 389.55,102.12 389.55,100.3 C389.55,98.48 386.96,97 383.77,97 C380.59,97 378,98.48 378,100.3 Z" style="stroke-width: 8; stroke: rgb(29, 34, 46); stroke-opacity: 1; fill: none; fill-opacity: 1;" /></ns0:g><ns0:g class="composite-shape"><ns0:path class="real" d=" M286,101.71 C286,100.45 287.79,99.43 290,99.43 C292.21,99.43 294,100.45 294,101.71 C294,102.98 292.21,104 290,104 C287.79,104 286,102.98 286,101.71 Z" style="stroke-width: 7; stroke: rgb(52, 61, 85); stroke-opacity: 1; fill: none; fill-opacity: 1;" /></ns0:g><ns0:g class="composite-shape"><ns0:path class="real" d=" M310,139.71 C310,138.45 311.79,137.43 314,137.43 C316.21,137.43 318,138.45 318,139.71 C318,140.98 316.21,142 314,142 C311.79,142 310,140.98 310,139.71 Z" style="stroke-width: 7; stroke: rgb(52, 61, 85); stroke-opacity: 1; fill: none; fill-opacity: 1;" /></ns0:g><ns0:g class="composite-shape"><ns0:path class="real" d=" M417,168.71 C417,167.45 418.79,166.43 421,166.43 C423.21,166.43 425,167.45 425,168.71 C425,169.98 423.21,171 421,171 C418.79,171 417,169.98 417,168.71 Z" style="stroke-width: 7; stroke: rgb(52, 61, 85); stroke-opacity: 1; fill: none; fill-opacity: 1;" /></ns0:g><ns0:g class="composite-shape"><ns0:path class="real" d=" M412,256.71 C412,255.45 413.79,254.43 416,254.43 C418.21,254.43 420,255.45 420,256.71 C420,257.98 418.21,259 416,259 C413.79,259 412,257.98 412,256.71 Z" style="stroke-width: 7; stroke: rgb(52, 61, 85); stroke-opacity: 1; fill: none; fill-opacity: 1;" /></ns0:g><ns0:g class="composite-shape"><ns0:path class="real" d=" M297,308.71 C297,307.45 298.79,306.43 301,306.43 C303.21,306.43 305,307.45 305,308.71 C305,309.98 303.21,311 301,311 C298.79,311 297,309.98 297,308.71 Z" style="stroke-width: 7; stroke: rgb(52, 61, 85); stroke-opacity: 1; fill: none; fill-opacity: 1;" /></ns0:g><ns0:g class="composite-shape"><ns0:path class="real" d=" M185,284.71 C185,283.45 186.79,282.43 189,282.43 C191.21,282.43 193,283.45 193,284.71 C193,285.98 191.21,287 189,287 C186.79,287 185,285.98 185,284.71 Z" style="stroke-width: 7; stroke: rgb(52, 61, 85); stroke-opacity: 1; fill: none; fill-opacity: 1;" /></ns0:g><ns0:g class="composite-shape"><ns0:path class="real" d=" M239,353.71 C239,352.45 240.79,351.43 243,351.43 C245.21,351.43 247,352.45 247,353.71 C247,354.98 245.21,356 243,356 C240.79,356 239,354.98 239,353.71 Z" style="stroke-width: 7; stroke: rgb(52, 61, 85); stroke-opacity: 1; fill: none; fill-opacity: 1;" /></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M406,104.6 C422.66,87.55 473.89,135.61 451.47,155.42" style="stroke: rgb(52, 61, 85); stroke-width: 1; fill: none; fill-opacity: 1; stroke-opacity: 1;" /><ns0:g stroke="rgb(52,61,85)" transform="matrix(0.8073724359982183,-0.5900421591634812,0.5900421591634812,0.8073724359982183,450,156.5999908447266)" style="stroke: rgb(52, 61, 85); stroke-width: 1;" stroke-opacity="1"><ns0:path d=" M10.93,-3.29 Q4.96,-0.45 0,0 Q4.96,0.45 10.93,3.29" /></ns0:g></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M437,175.6 C453.66,158.55 462.64,228.7 438.52,249.4" style="stroke: rgb(52, 61, 85); stroke-width: 1; fill: none; fill-opacity: 1; stroke-opacity: 1;" /><ns0:g stroke="rgb(52,61,85)" transform="matrix(0.8073724359982183,-0.5900421591634812,0.5900421591634812,0.8073724359982183,437,250.59999084472656)" style="stroke: rgb(52, 61, 85); stroke-width: 1;" stroke-opacity="1"><ns0:path d=" M10.93,-3.29 Q4.96,-0.45 0,0 Q4.96,0.45 10.93,3.29" /></ns0:g></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M403,260.6 C406.96,236.84 330.55,252.28 317.38,299.17" style="stroke: rgb(52, 61, 85); stroke-width: 1; fill: none; fill-opacity: 1; stroke-opacity: 1;" /><ns0:g stroke="rgb(52,61,85)" transform="matrix(0.24259923079540796,-0.9701265964901057,0.9701265964901057,0.24259923079540796,317,300.59999084472656)" style="stroke: rgb(52, 61, 85); stroke-width: 1;" stroke-opacity="1"><ns0:path d=" M10.93,-3.29 Q4.96,-0.45 0,0 Q4.96,0.45 10.93,3.29" /></ns0:g></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M286,294.6 C302.75,277.46 255.46,182.51 222.5,195.91" style="stroke: rgb(52, 61, 85); stroke-width: 1; fill: none; fill-opacity: 1; stroke-opacity: 1;" /><ns0:g stroke="rgb(52,61,85)" transform="matrix(0.8889372138718585,-0.45802907090460715,0.45802907090460715,0.8889372138718585,221,196.59999084472656)" style="stroke: rgb(52, 61, 85); stroke-width: 1;" stroke-opacity="1"><ns0:path d=" M10.93,-3.29 Q4.96,-0.45 0,0 Q4.96,0.45 10.93,3.29" /></ns0:g></ns0:g><ns0:g /></ns0:g><ns0:g /><ns0:g /><ns0:g /></ns0:svg> <ns0:svg width="660" height="458.6000061035156" style="width:660px;height:458.6000061035156px;font-family:Asana-Math, Asana;background:transparent;">ns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,189.79998779296875,168.8000030517578)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M328 111L304 94C251 56 203 36 167 36C120 36 91 73 91 133C91 158 94 185 99 214C116 218 225 248 250 259C335 296 374 342 374 404C374 451 340 482 290 482C222 496 112 423 75 349C45 299 15 180 15 113C15 35 59 -11 131 -11C188 -11 244 17 336 92ZM113 274C130 343 150 386 179 412C197 428 228 440 252 440C281 440 300 420 300 388C300 344 265 297 213 272C185 258 149 247 104 237Z" stroke="rgb(52,61,85)" stroke-opacity="1" stroke-width="8" fill="rgb(52,61,85)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g>ns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,383.79998779296875,81.79998779296875)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M9 1C24 -7 40 -11 52 -11C85 -11 124 18 155 65L231 182L242 113C255 28 278 -11 314 -11C336 -11 368 6 400 35L449 79L440 98C404 68 379 53 363 53C348 53 335 63 325 83C316 102 305 139 300 168L282 269L317 318C364 383 391 406 422 406C438 406 450 398 455 383L469 387L484 472C472 479 463 482 454 482C414 482 374 446 312 354L275 299L269 347C257 446 230 482 171 482C145 482 123 474 114 461L56 378L73 368C103 402 123 416 142 416C175 416 197 375 214 277L225 215L185 153C142 86 108 54 80 54C65 54 54 58 52 63L41 91L21 88C21 53 13 27 9 1Z" stroke="rgb(52,61,85)" stroke-opacity="1" stroke-width="8" fill="rgb(52,61,85)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g>ns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,118.79998779296875,85.80000305175781)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M221 385L263 613C270 652 277 658 314 661L356 664L359 692L335 692L245 689C229 689 211 689 168 690L104 692L101 664L148 662C172 661 183 653 183 635C183 621 179 590 174 559L100 125C83 33 82 32 42 28L1 25L-3 -3L39 -2C87 -1 110 0 129 0L226 -3L252 -3L255 25L206 28C179 30 170 37 170 58C170 67 171 74 174 93L216 340L277 341C339 342 381 343 400 343C419 343 460 342 523 341L584 340L544 125C535 76 528 48 523 42C519 34 508 30 486 28L436 25L432 -3L488 -2C532 -1 562 0 573 0C589 0 620 -1 663 -2L705 -3L708 25L650 28C624 29 614 37 614 58C614 67 615 76 618 93L710 613C717 652 723 657 761 661L797 664L800 692L784 692L693 689C678 689 657 689 613 690L550 692L547 664L595 662C619 661 630 653 630 635C630 621 626 589 621 559L591 385Z" stroke="rgb(52,61,85)" stroke-opacity="1" stroke-width="8" fill="rgb(52,61,85)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g></ns0:svg></ns0:svg>
Imagine a finite set H, closed under products, with the identity element e in it. Starting from an arbitrary element x, start taking left products, h1x, h2h1x and so on... each of these products are the images of x under distinct left coset maps. so eventually, we have to hit e, (we will show that we can't loop around without ever hitting e), basically allowing us to get closure under inverses.

proof:
Since H is finite, let |H|=n, we can index the elements of H={h0=e,h1,hn1}. We claim that the left coset maps L(H) are well defined from H to H. suppose xH and hiH. then fhi(x)=hixH due to product closure.
Now, Consider the set of orbits of xH under each map in L(H) defined as Orb(x)={hix:hiH}. By two left coset maps never agree on the image of a particular element if hix=hjx, then in G which has inverses, hi=hj meaning that they are the identical left coset map in G, Hence, they are identical in H. Therefore Orb(x) has n distinct elements, each of which lie in H. Hence Orb(x)=H, given that H is finite. Since Orb(x)=H there exists some hjH such that hjx=h0=e. This is the inverse of an element x. Hence H is closed under inverses. see necessary and sufficient conditions for subgroups.