1 - Maps on Groups

---dg-publish: true---

Group homomorphism

let G1,G2 be groups and f:G1G2 be a map. f is a group homomorphism if for each x,yG1, f(xG1y)=f(x)G2f(y).

furthermore, we will suppress any notation to indicate that xy is a product in G1 and f(x)(fy) is a product in G2.

Properties of homomorphisms

For the following discussion, let G1,G2 be groups, with identities e1 and e2 and f a homomorphism from G1 to G2.

  1. f(e1)=e2 (under a homomorphism, the image of the identity of the domain group, is the identity of the target group).
  2. for each xG1, f(x)1G2 is f(x1) where x1 is the inverse x in G1.
  3. Let G1,G2,G3 all be groups, and let f be a homomorphism from G1 to G2, h a homomorphism from G2 to G3, then hf is a homomorphism from G1 to G3.(the composition of homomorphisms, is itself a homomorphism).
    <ns0:svg xmlns:ns0="http://www.w3.org/2000/svg" x="0" y="0" width="661.6000366210938" height="147.1999969482422" style=" width:661.6000366210938px; height:147.1999969482422px; background: transparent; fill: none; "> <ns0:svg class="role-diagram-draw-area"><ns0:g class="shapes-region" style="stroke: black; fill: none;"><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M148,53.6 L268,53.6" style="stroke: rgb(52, 61, 85); stroke-width: 1; fill: none; fill-opacity: 1; stroke-opacity: 1;" /><ns0:g stroke="rgb(52,61,85)" transform="matrix(-1,1.2246467991473532e-16,-1.2246467991473532e-16,-1,270,53.59999084472657)" style="stroke: rgb(52, 61, 85); stroke-width: 1;" stroke-opacity="1"><ns0:path d=" M10.93,-3.29 Q4.96,-0.45 0,0 Q4.96,0.45 10.93,3.29" /></ns0:g></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M332,52.6 L450,52.6" style="stroke: rgb(52, 61, 85); stroke-width: 1; fill: none; fill-opacity: 1; stroke-opacity: 1;" /><ns0:g stroke="rgb(52,61,85)" transform="matrix(-1,1.2246467991473532e-16,-1.2246467991473532e-16,-1,452,52.59999084472656)" style="stroke: rgb(52, 61, 85); stroke-width: 1;" stroke-opacity="1"><ns0:path d=" M10.93,-3.29 Q4.96,-0.45 0,0 Q4.96,0.45 10.93,3.29" /></ns0:g></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M121,75 C234.85,102.32 417.31,97.7 459.76,68.49" style="stroke: rgb(52, 61, 85); stroke-width: 1; fill: none; fill-opacity: 1; stroke-opacity: 1;" /><ns0:g stroke="rgb(52,61,85)" transform="matrix(-0.7999989281485084,0.6000014291326627,-0.6000014291326627,-0.7999989281485084,461,67.59999084472656)" style="stroke: rgb(52, 61, 85); stroke-width: 1;" stroke-opacity="1"><ns0:path d=" M10.93,-3.29 Q4.96,-0.45 0,0 Q4.96,0.45 10.93,3.29" /></ns0:g></ns0:g><ns0:g /></ns0:g><ns0:g /><ns0:g /><ns0:g /></ns0:svg> <ns0:svg width="660" height="145.60000610351562" style="width:660px;height:145.60000610351562px;font-family:Asana-Math, Asana;background:transparent;">ns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,112.79998779296875,59.98748779296875)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M434 653C511 653 565 639 621 603L621 519L648 519C653 576 661 619 675 665C592 695 535 706 466 706C374 706 301 683 229 632C112 548 50 424 50 274C50 87 159 -18 355 -18C412 -21 559 6 608 37C628 193 632 216 633 219C635 228 647 238 660 240L692 246L694 274C655 270 620 269 569 269C518 269 482 270 440 274L435 246L469 244C544 240 553 236 553 212C553 197 533 84 528 60C483 36 444 27 390 27C224 27 138 120 138 297C138 443 197 653 434 653Z" stroke="rgb(52,61,85)" stroke-opacity="1" stroke-width="8" fill="rgb(52,61,85)" fill-opacity="1" /></ns0:g></ns0:g>ns0:gns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,125.5625,62.99999084472656)"><ns0:path transform="matrix(0.0119,0,0,-0.0119,0,0)" d="M418 -3L418 27L366 30C311 33 301 44 301 96L301 700L60 598L67 548L217 614L217 96C217 44 206 33 152 30L96 27L96 -3C250 0 250 0 261 0C292 0 402 -3 418 -3Z" stroke="rgb(52,61,85)" stroke-opacity="1" stroke-width="8" fill="rgb(52,61,85)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g></ns0:g></ns0:g></ns0:g>ns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,288.79998779296875,59.98748779296875)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M434 653C511 653 565 639 621 603L621 519L648 519C653 576 661 619 675 665C592 695 535 706 466 706C374 706 301 683 229 632C112 548 50 424 50 274C50 87 159 -18 355 -18C412 -21 559 6 608 37C628 193 632 216 633 219C635 228 647 238 660 240L692 246L694 274C655 270 620 269 569 269C518 269 482 270 440 274L435 246L469 244C544 240 553 236 553 212C553 197 533 84 528 60C483 36 444 27 390 27C224 27 138 120 138 297C138 443 197 653 434 653Z" stroke="rgb(52,61,85)" stroke-opacity="1" stroke-width="8" fill="rgb(52,61,85)" fill-opacity="1" /></ns0:g></ns0:g>ns0:gns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,301.5625,62.99999084472656)"><ns0:path transform="matrix(0.0119,0,0,-0.0119,0,0)" d="M16 23L16 -3C203 -3 203 0 239 0C275 0 275 -3 468 -3L468 82C353 77 307 81 122 77L304 270C401 373 431 428 431 503C431 618 353 689 226 689C154 689 105 669 56 619L39 483L68 483L81 529C97 587 133 612 200 612C286 612 341 558 341 473C341 398 299 324 186 204Z" stroke="rgb(52,61,85)" stroke-opacity="1" stroke-width="8" fill="rgb(52,61,85)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g></ns0:g></ns0:g></ns0:g>ns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,468.79998779296875,59.98748779296875)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M434 653C511 653 565 639 621 603L621 519L648 519C653 576 661 619 675 665C592 695 535 706 466 706C374 706 301 683 229 632C112 548 50 424 50 274C50 87 159 -18 355 -18C412 -21 559 6 608 37C628 193 632 216 633 219C635 228 647 238 660 240L692 246L694 274C655 270 620 269 569 269C518 269 482 270 440 274L435 246L469 244C544 240 553 236 553 212C553 197 533 84 528 60C483 36 444 27 390 27C224 27 138 120 138 297C138 443 197 653 434 653Z" stroke="rgb(52,61,85)" stroke-opacity="1" stroke-width="8" fill="rgb(52,61,85)" fill-opacity="1" /></ns0:g></ns0:g>ns0:gns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,481.5625,62.99999084472656)"><ns0:path transform="matrix(0.0119,0,0,-0.0119,0,0)" d="M462 224C462 345 355 366 308 374C388 436 418 482 418 541C418 630 344 689 233 689C165 689 120 670 72 622L43 498L74 498L92 554C103 588 166 622 218 622C283 622 336 569 336 506C336 431 277 368 206 368C198 368 187 369 174 370L159 371L147 318L154 312C192 329 211 334 238 334C321 334 369 281 369 190C369 88 308 21 215 21C169 21 128 36 98 64C74 86 61 109 42 163L15 153C36 92 44 56 50 6C103 -12 147 -20 184 -20C307 -20 462 87 462 224Z" stroke="rgb(52,61,85)" stroke-opacity="1" stroke-width="8" fill="rgb(52,61,85)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g></ns0:g></ns0:g></ns0:g>ns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,202.79998779296875,37.98748779296875)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M345 437L329 437L350 549C366 635 394 673 440 673C470 673 497 658 512 634L522 638C527 654 537 685 545 705L550 720C534 727 503 733 480 733C469 733 453 730 445 726C421 715 339 654 316 630C294 608 282 578 271 521L256 442C215 422 195 414 170 405L165 383L246 383L237 327C207 132 170 -54 148 -123C130 -182 100 -213 64 -213C41 -213 30 -206 12 -184L-2 -188C-6 -211 -20 -259 -25 -268C-16 -273 -1 -276 10 -276C51 -276 105 -245 144 -198C215 -114 235 -18 319 383L423 383C427 402 434 425 440 439L436 446C407 439 408 437 345 437Z" stroke="rgb(52,61,85)" stroke-opacity="1" stroke-width="8" fill="rgb(52,61,85)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g>ns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,371.79998779296875,39.79998779296875)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M236 722L224 733C179 711 138 697 64 691L60 670L108 670C126 670 142 667 142 647C142 641 142 632 140 622L98 388C78 272 36 80 10 2L17 -9L86 7C94 64 108 164 148 236C193 317 296 414 338 414C349 414 360 407 360 393C360 375 355 342 345 303L294 107C288 85 281 55 281 31C281 6 291 -9 312 -9C344 -9 412 41 471 85L461 103L435 86C412 71 386 56 374 56C367 56 361 65 361 76C361 88 364 101 368 116L432 372C438 398 443 423 443 447C443 464 437 482 411 482C376 482 299 437 231 374C198 343 172 308 144 273L140 275Z" stroke="rgb(52,61,85)" stroke-opacity="1" stroke-width="8" fill="rgb(52,61,85)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g>ns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,276.79998779296875,121.80000305175781)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M236 722L224 733C179 711 138 697 64 691L60 670L108 670C126 670 142 667 142 647C142 641 142 632 140 622L98 388C78 272 36 80 10 2L17 -9L86 7C94 64 108 164 148 236C193 317 296 414 338 414C349 414 360 407 360 393C360 375 355 342 345 303L294 107C288 85 281 55 281 31C281 6 291 -9 312 -9C344 -9 412 41 471 85L461 103L435 86C412 71 386 56 374 56C367 56 361 65 361 76C361 88 364 101 368 116L432 372C438 398 443 423 443 447C443 464 437 482 411 482C376 482 299 437 231 374C198 343 172 308 144 273L140 275Z" stroke="rgb(52,61,85)" stroke-opacity="1" stroke-width="8" fill="rgb(52,61,85)" fill-opacity="1" /></ns0:g></ns0:g>ns0:g<ns0:g transform="matrix(1,0,0,1,292.92498779296875,121.80000305175781)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M342 271C342 352 277 417 195 417C112 417 47 352 47 271C47 188 112 124 195 124C277 124 342 188 342 271ZM304 271C304 209 254 161 195 161C133 161 85 209 85 271C85 331 133 380 195 380C254 380 304 331 304 271Z" stroke="rgb(52,61,85)" stroke-opacity="1" stroke-width="8" fill="rgb(52,61,85)" fill-opacity="1" /></ns0:g></ns0:g>ns0:g<ns0:g transform="matrix(1,0,0,1,302.92498779296875,121.80000305175781)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M594 437L578 437L599 549C615 635 643 673 689 673C719 673 746 658 761 634L771 638C776 654 786 685 794 705L799 720C783 727 752 733 729 733C718 733 702 730 694 726C670 715 588 654 565 630C543 608 531 578 520 521L505 442C464 422 444 414 419 405L414 383L495 383L486 327C456 132 419 -54 397 -123C379 -182 349 -213 313 -213C290 -213 279 -206 261 -184L247 -188C243 -211 229 -259 224 -268C233 -273 248 -276 259 -276C300 -276 354 -245 393 -198C464 -114 484 -18 568 383L672 383C676 402 683 425 689 439L685 446C656 439 657 437 594 437Z" stroke="rgb(52,61,85)" stroke-opacity="1" stroke-width="8" fill="rgb(52,61,85)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g></ns0:svg></ns0:svg>

proof:

  1. We will use The unqiue property of the identity element of a group. Notice that f(e1e1)=f(e1)f(e1)=f(e1). Hence it must be that f(e1)=e2.
  2. Notice that for any xG1, f(xx1)=f(x)f(x1) but xx1=e1. Therefore, e2=f(x)f(x1) Hence f(x1) is the unique inverse of f(x) in G2. In notation, f(x)1=f(x1).
  3. let x,y be arbitrary elements of G1. Then, h(f(xy))=h(f(x)f(y))=h(f(x)) h(f(y)).


Group isomorphism

let G1, G2 be groups. a map f:G1G2 is an isomorphism, if it is a bijective homomorphism. An isomorphism from G onto itself is called an automorphism.

The inverse of an isomorphism is an isomorphism

if f:G1G2 is an isomorphism, then f1:G2G1 is an isomorphism, where G1,G2 are groups.

proof:
The inverse of a bijection, is also a bijection. Hence, it is sufficient to prove that f1 is a homomorphism. let u,v be arbitrary elements of G2. Then, since f is bijective, there exists unique x,yG1 such that u=f(x),v=f(y). hence uv=f(x)f(y)=f(xy). Now, f1(uv)=f1f(xy)=xy=f1(u)f1(v). Hence f1 is a homomorphism.


The collection of all automorphisms on a group, is itself a group

Let G be a group, and let Aut(G) be the collection of all automorphisms on G. Then this set, with map composition as the operator, forms a group.

proof:
notice that the identity map id(x)=x from G to G is an automorphism (it is both bijective and homomorphic). And acts as the group identity under composition. for any two maps f,hAut(G). Then hf is bijective, moreover due to Properties of homomorphisms hf is a homomorphism, hence hfAut(G). Associativity follows as a property of function composition, and due to The inverse of an isomorphism is an isomorphism, for each fAut(G), f1Aut(G) : the inverse map, acts as the group inverse element.


The left coset map:
left coset maps on a group

Let G be a group, and g an arbitrary element of G. then the left coset map fg:GG is the map fg(x)=gx for each xG.

left coset maps are bijective

Let G be a group, and L(G) be the collection of left coset maps from G to G. Then, every element fgL(G) is a bijection on G.

proof:
Let g be an arbitrary element of G. We claim that fg is a bijection. suppose for x,yG, fg(x)=fg(y). Then, gx=gy hence x=y, showing injectivity.
Now, suppose y is an arbitrary element in G. Notice that fg(g1y)=g(g1y)=y. Showing Surjectivity.


the collection of left coset maps, is a group

Let G be a group, then the collection of left coset maps L(G) is a group under map composition. Moreover, L(G) is isomorphic to G.

proof:
The identity map on G is fe=ex for all xG, feL(G) is the group identity as fefg=fgfe=fg for any fgL(G). Associativity follows as a property of map composition, of course, the composition of two left coset maps fg ,fhL(G) . is fgfh=fgh , because for all xG fg(fh(x))=g(hx)=(gh)x=fgh(x). Hence, L(G) is closed under composition, moreover the map gfg is a homomorphism, as ghfgh=fgfh .
For each fgL(G) the unique fg1 is given by fg1. This is because for each xG, fg(fg1(x))=fg1(fg(x))=gg1x=g1gx=ex. Hence fgfg1=fg1fg=fe.
We claim that the map gfg is bijective. Surjectivity is obvious. now suppose that fg1=fg2 then for each xG, g1x=g2x hence g1=g2. Hence we produce the desired isomorphism from G to L(G).


two distinct left coset maps never agree on the image of a particular element.

Let G be a group, and fg,fhL(G) be two distinct left coset maps. Then there is no xG such that fg(x)=fh(x)
Otherwise, this would imply that gx=hx hence g=h (multiplying x1 on both the sides), meaning that fg and fh are identical maps.


Warning!!

A left coset map not NOT a homomorphism
Let G be a group. Then a map fgL(G) if ge then fg is not a homomorphism from G to G .
fg(xy)=g(xy) , fg(x)fg(y)=gxgy. Even if G is abelian, gxgy=g2xy and g2=g only if g=e. See The unique property of the identity of a group.