1 - Ordered Fields, Euclidean Spaces, Cardinality.

Field

A set F with two operators + ,  is a Field if:

  • (F,+) is an Abelian group, whose identity we denote as 0.
  • (F{0},) is an Abelian group, whose identity we denote as 1.
  • There is a distributive law of over +. That is, x(y+z)=xy+xz for all x,y,zF.
About Fields

There are a lot of things to say about fields. We won't say a lot here. We'll rather take our familiarity with real numbers for granted, and capture some important properties.

Ordered Field

An ordered set F that is also a field is an ordered field if:

  • x<y implies z+y<z+x for any zF.
  • if x>0 and y>0 then xy>0.
Informal

Essentially, an ordered field is one such that order plays nice with multiplication and addition in a familiar way.
The following statements are true in every ordered field. We will not prove these.

  • If x>0 then x<0, and vice versa.
  • If x>0 and y<z then xy<xz.
  • If x<0 and y<z then xy>xz.
  • If x0 then x2>0. In particular, 1>0.
  • If 0<x<y then 0<1/y<1/x.

Properties of Reals:

Intuition for the Archimedean property

Pick any real x, and any positive real y, it's clear that at at some point, the natural number multiplies of y, Ny={ny:nN} get larger than x. say n0 is the smallest number for which n0y>x <ns0:svg xmlns:ns0="http://www.w3.org/2000/svg" x="0" y="0" width="661.45458984375" height="301.4545593261719" style=" width:661.45458984375px; height:301.4545593261719px; background: transparent; fill: none; "> <ns0:svg class="role-diagram-draw-area"><ns0:g class="shapes-region" style="stroke: black; fill: none;"><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M74,95 L594.82,95" style="stroke: rgb(0, 0, 0); stroke-width: 1; fill: none; fill-opacity: 1;" /><ns0:g stroke="#11111b" transform="matrix(-1,1.2246467991473532e-16,-1.2246467991473532e-16,-1,596.8181762695312,95.00000000000001)" style="stroke: rgb(0, 0, 0); stroke-width: 1;"><ns0:path d=" M10.93,-3.29 Q4.96,-0.45 0,0 Q4.96,0.45 10.93,3.29" /></ns0:g><ns0:g stroke="#11111b" transform="matrix(1,0,0,1,72,95)" style="stroke: rgb(0, 0, 0); stroke-width: 1;"><ns0:path d=" M10.93,-3.29 Q4.96,-0.45 0,0 Q4.96,0.45 10.93,3.29" /></ns0:g></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M139,74.82 L139,109" style="stroke: rgb(0, 0, 0); stroke-width: 1; fill: none; fill-opacity: 1;" /></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M315,76.82 L315,111" style="stroke: rgb(0, 0, 0); stroke-width: 1; fill: none; fill-opacity: 1;" /></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M359,75.82 L359,110" style="stroke: rgb(0, 0, 0); stroke-width: 1; fill: none; fill-opacity: 1;" /></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M77,202 L595.82,202" style="stroke: rgb(29, 34, 46); stroke-width: 2; fill: none; fill-opacity: 1; stroke-opacity: 1;" /><ns0:g stroke="rgb(29,34,46)" transform="matrix(-1,1.2246467991473532e-16,-1.2246467991473532e-16,-1,598.8181762695312,201.99999999999997)" style="stroke: rgb(29, 34, 46); stroke-width: 2;" stroke-opacity="1"><ns0:path d=" M14.21,-4.28 Q6.45,-0.59 0,0 Q6.45,0.59 14.21,4.28" /></ns0:g><ns0:g stroke="rgb(29,34,46)" transform="matrix(1,0,0,1,74,202)" style="stroke: rgb(29, 34, 46); stroke-width: 2;" stroke-opacity="1"><ns0:path d=" M14.21,-4.28 Q6.45,-0.59 0,0 Q6.45,0.59 14.21,4.28" /></ns0:g></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M141,182.82 L141,217" style="stroke: rgb(29, 34, 46); stroke-width: 2; fill: none; fill-opacity: 1; stroke-opacity: 1;" /></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M317,184.82 L317,219" style="stroke: rgb(29, 34, 46); stroke-width: 2; fill: none; fill-opacity: 1; stroke-opacity: 1;" /></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M163,192.82 L163,214.82" style="stroke: rgb(29, 34, 46); stroke-width: 2; fill: none; fill-opacity: 1; stroke-opacity: 1;" /></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M182,192.82 L182,212.82" style="stroke: rgb(29, 34, 46); stroke-width: 2; fill: none; fill-opacity: 1; stroke-opacity: 1;" /></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M214,194.82 L214,205.82 L214,212.82" style="stroke: rgb(29, 34, 46); stroke-width: 2; fill: none; fill-opacity: 1; stroke-opacity: 1;" /></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M238,190.82 L237.82,212.82" style="stroke: rgb(29, 34, 46); stroke-width: 2; fill: none; fill-opacity: 1; stroke-opacity: 1;" /></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M277,189.82 L276.82,211.82" style="stroke: rgb(29, 34, 46); stroke-width: 2; fill: none; fill-opacity: 1; stroke-opacity: 1;" /></ns0:g><ns0:g /></ns0:g><ns0:g /><ns0:g /><ns0:g /></ns0:svg> <ns0:svg width="660" height="300" style="width:660px;height:300px;font-family:Asana-Math, Asana;background:transparent;">ns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,134.727294921875,130.72726440429688)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M-7 -180C-8 -187 -8 -193 -8 -198C-8 -241 29 -276 74 -276C180 -276 290 -152 349 33L490 473L479 482C450 471 427 465 405 463L370 331C358 284 323 211 290 162C255 111 206 67 184 67C172 67 163 90 164 115L180 322C182 353 184 391 184 419C184 464 177 482 160 482C147 482 133 475 85 442L3 386L14 368L64 398C69 401 80 410 89 410C103 410 111 391 111 358C111 357 111 351 110 343L93 100L92 60C92 18 110 -11 135 -11C172 -11 256 74 331 187L282 16C231 -161 181 -234 111 -234C76 -234 49 -207 49 -172C49 -167 50 -159 51 -150L41 -146Z" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" fill="rgb(0,0,0)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g>ns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,310.727294921875,132.72726440429688)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M9 1C24 -7 40 -11 52 -11C85 -11 124 18 155 65L231 182L242 113C255 28 278 -11 314 -11C336 -11 368 6 400 35L449 79L440 98C404 68 379 53 363 53C348 53 335 63 325 83C316 102 305 139 300 168L282 269L317 318C364 383 391 406 422 406C438 406 450 398 455 383L469 387L484 472C472 479 463 482 454 482C414 482 374 446 312 354L275 299L269 347C257 446 230 482 171 482C145 482 123 474 114 461L56 378L73 368C103 402 123 416 142 416C175 416 197 375 214 277L225 215L185 153C142 86 108 54 80 54C65 54 54 58 52 63L41 91L21 88C21 53 13 27 9 1Z" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" fill="rgb(0,0,0)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g>ns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,354.727294921875,131.72726440429688)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M24 388L31 368L63 389C100 412 103 414 110 414C121 414 128 404 128 389C128 338 87 145 46 2L53 -9C78 -2 101 4 123 8C142 134 163 199 209 268C263 352 338 414 383 414C394 414 400 405 400 390C400 372 397 351 389 319L337 107C328 70 324 47 324 31C324 6 335 -9 354 -9C380 -9 416 12 514 85L504 103L478 86C449 67 427 56 417 56C410 56 404 65 404 76C404 81 405 92 406 96L472 372C479 401 483 429 483 446C483 469 472 482 452 482C410 482 341 444 282 389C244 354 216 320 164 247L202 408C206 426 208 438 208 449C208 470 200 482 185 482C164 482 125 460 52 408Z" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" fill="rgb(0,0,0)" fill-opacity="1" /></ns0:g></ns0:g>ns0:gns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,364.67047119140625,134.72955932617188)"><ns0:path transform="matrix(0.0119,0,0,-0.0119,0,0)" d="M263 689C108 689 29 566 29 324C29 207 50 106 85 57C120 8 176 -20 238 -20C389 -20 465 110 465 366C465 585 400 689 263 689ZM245 654C342 654 381 556 381 316C381 103 343 15 251 15C154 15 113 116 113 360C113 571 150 654 245 654Z" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" fill="rgb(0,0,0)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g></ns0:g>ns0:g<ns0:g transform="matrix(1,0,0,1,371.625,131.72726440429688)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M-7 -180C-8 -187 -8 -193 -8 -198C-8 -241 29 -276 74 -276C180 -276 290 -152 349 33L490 473L479 482C450 471 427 465 405 463L370 331C358 284 323 211 290 162C255 111 206 67 184 67C172 67 163 90 164 115L180 322C182 353 184 391 184 419C184 464 177 482 160 482C147 482 133 475 85 442L3 386L14 368L64 398C69 401 80 410 89 410C103 410 111 391 111 358C111 357 111 351 110 343L93 100L92 60C92 18 110 -11 135 -11C172 -11 256 74 331 187L282 16C231 -161 181 -234 111 -234C76 -234 49 -207 49 -172C49 -167 50 -159 51 -150L41 -146Z" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" fill="rgb(0,0,0)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g>ns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,136.727294921875,238.72726440429688)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M-7 -180C-8 -187 -8 -193 -8 -198C-8 -241 29 -276 74 -276C180 -276 290 -152 349 33L490 473L479 482C450 471 427 465 405 463L370 331C358 284 323 211 290 162C255 111 206 67 184 67C172 67 163 90 164 115L180 322C182 353 184 391 184 419C184 464 177 482 160 482C147 482 133 475 85 442L3 386L14 368L64 398C69 401 80 410 89 410C103 410 111 391 111 358C111 357 111 351 110 343L93 100L92 60C92 18 110 -11 135 -11C172 -11 256 74 331 187L282 16C231 -161 181 -234 111 -234C76 -234 49 -207 49 -172C49 -167 50 -159 51 -150L41 -146Z" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" fill="rgb(0,0,0)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g>ns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,312.727294921875,240.72726440429688)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M9 1C24 -7 40 -11 52 -11C85 -11 124 18 155 65L231 182L242 113C255 28 278 -11 314 -11C336 -11 368 6 400 35L449 79L440 98C404 68 379 53 363 53C348 53 335 63 325 83C316 102 305 139 300 168L282 269L317 318C364 383 391 406 422 406C438 406 450 398 455 383L469 387L484 472C472 479 463 482 454 482C414 482 374 446 312 354L275 299L269 347C257 446 230 482 171 482C145 482 123 474 114 461L56 378L73 368C103 402 123 416 142 416C175 416 197 375 214 277L225 215L185 153C142 86 108 54 80 54C65 54 54 58 52 63L41 91L21 88C21 53 13 27 9 1Z" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" fill="rgb(0,0,0)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g>ns0:gns0:gns0:gns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,290.125,216.72726440429688)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M499 116C469 116 442 88 442 58C442 28 469 0 498 0C530 0 558 27 558 58C558 88 530 116 499 116ZM166 116C136 116 109 88 109 58C109 28 136 0 165 0C197 0 225 27 225 58C225 88 197 116 166 116ZM832 116C802 116 775 88 775 58C775 28 802 0 831 0C863 0 891 27 891 58C891 88 863 116 832 116Z" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" fill="rgb(0,0,0)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g></ns0:g></ns0:g></ns0:g></ns0:svg></ns0:svg>
Otherwise, as seen in the bold white diagram above, the set Ny accumulates in between y and x, and x acts as an upper bound for Ny, which means that Ny has a supremum in R, which raises an issue:

Archimedean property

For any xR and y>0R, the set Ny>x={ny>x:nN} is non empty.

proof: For the sake of contradiction, suppose Ny>x is empty, which means that for any element u of the set Ny={ny:nN}, ux. Hence, for example x+1 is an upperbound for Ny. Therefore, there exists α=supNyR. But since y>0, we have αy<α. Which means that αy is not an upper bound of Ny. so we have some mN such that myαy, allow (m+1)y>αy. Then, (m+2)y>α. Which is a contradiction because (m+2)y is an element of Ny, which is greater than the supremum α of Ny.


Any POSITIVE real number is sandwiched between two consecutive integers. <ns0:svg xmlns:ns0="http://www.w3.org/2000/svg" x="0" y="0" width="661.45458984375" height="185.9091033935547" style=" width:661.45458984375px; height:185.9091033935547px; background: transparent; fill: none; "> <ns0:svg class="role-diagram-draw-area"><ns0:g class="shapes-region" style="stroke: black; fill: none;"><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M75,95 L593.82,95" style="stroke: rgb(0, 0, 0); stroke-width: 2; fill: none; fill-opacity: 1;" /><ns0:g stroke="#11111b" transform="matrix(-1,1.2246467991473532e-16,-1.2246467991473532e-16,-1,596.8181762695312,95.00000000000001)" style="stroke: rgb(0, 0, 0); stroke-width: 2;"><ns0:path d=" M14.21,-4.28 Q6.45,-0.59 0,0 Q6.45,0.59 14.21,4.28" /></ns0:g><ns0:g stroke="#11111b" transform="matrix(1,0,0,1,72,95)" style="stroke: rgb(0, 0, 0); stroke-width: 2;"><ns0:path d=" M14.21,-4.28 Q6.45,-0.59 0,0 Q6.45,0.59 14.21,4.28" /></ns0:g></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M315,80.82 L315,115" style="stroke: rgb(0, 0, 0); stroke-width: 2; fill: none; fill-opacity: 1;" /></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M356,78.82 L356,113" style="stroke: rgb(0, 0, 0); stroke-width: 2; fill: none; fill-opacity: 1;" /></ns0:g><ns0:g class="arrow-line"><ns0:path class="connection real" stroke-dasharray="" d=" M262,79.82 L262,97.82 L262,114" style="stroke: rgb(0, 0, 0); stroke-width: 2; fill: none; fill-opacity: 1;" /></ns0:g><ns0:g /></ns0:g><ns0:g /><ns0:g /><ns0:g /></ns0:svg> <ns0:svg width="660" height="184.4545440673828" style="width:660px;height:184.4545440673828px;font-family:Asana-Math, Asana;background:transparent;">ns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,310.727294921875,136.72726440429688)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M9 1C24 -7 40 -11 52 -11C85 -11 124 18 155 65L231 182L242 113C255 28 278 -11 314 -11C336 -11 368 6 400 35L449 79L440 98C404 68 379 53 363 53C348 53 335 63 325 83C316 102 305 139 300 168L282 269L317 318C364 383 391 406 422 406C438 406 450 398 455 383L469 387L484 472C472 479 463 482 454 482C414 482 374 446 312 354L275 299L269 347C257 446 230 482 171 482C145 482 123 474 114 461L56 378L73 368C103 402 123 416 142 416C175 416 197 375 214 277L225 215L185 153C142 86 108 54 80 54C65 54 54 58 52 63L41 91L21 88C21 53 13 27 9 1Z" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" fill="rgb(0,0,0)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g>ns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,351.727294921875,134.72726440429688)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M24 388L31 368L63 389C100 412 103 414 110 414C121 414 128 404 128 389C128 338 87 145 46 2L53 -9C78 -2 101 4 123 8C142 134 163 199 209 268C263 352 338 414 383 414C394 414 400 405 400 390C400 372 397 351 389 319L337 107C328 70 324 47 324 31C324 6 335 -9 354 -9C380 -9 416 12 514 85L504 103L478 86C449 67 427 56 417 56C410 56 404 65 404 76C404 81 405 92 406 96L472 372C479 401 483 429 483 446C483 469 472 482 452 482C410 482 341 444 282 389C244 354 216 320 164 247L202 408C206 426 208 438 208 449C208 470 200 482 185 482C164 482 125 460 52 408Z" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" fill="rgb(0,0,0)" fill-opacity="1" /></ns0:g></ns0:g>ns0:gns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,361.67047119140625,137.72955932617188)"><ns0:path transform="matrix(0.0119,0,0,-0.0119,0,0)" d="M263 689C108 689 29 566 29 324C29 207 50 106 85 57C120 8 176 -20 238 -20C389 -20 465 110 465 366C465 585 400 689 263 689ZM245 654C342 654 381 556 381 316C381 103 343 15 251 15C154 15 113 116 113 360C113 571 150 654 245 654Z" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" fill="rgb(0,0,0)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g></ns0:g></ns0:g></ns0:g>ns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,257.727294921875,135.72726440429688)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M24 388L31 368L63 389C100 412 103 414 110 414C121 414 128 404 128 389C128 338 87 145 46 2L53 -9C78 -2 101 4 123 8C142 134 163 199 209 268C263 352 338 414 383 414C394 414 400 405 400 390C400 372 397 351 389 319L337 107C328 70 324 47 324 31C324 6 335 -9 354 -9C380 -9 416 12 514 85L504 103L478 86C449 67 427 56 417 56C410 56 404 65 404 76C404 81 405 92 406 96L472 372C479 401 483 429 483 446C483 469 472 482 452 482C410 482 341 444 282 389C244 354 216 320 164 247L202 408C206 426 208 438 208 449C208 470 200 482 185 482C164 482 125 460 52 408Z" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" fill="rgb(0,0,0)" fill-opacity="1" /></ns0:g></ns0:g>ns0:gns0:gns0:gns0:g<ns0:g transform="matrix(1,0,0,1,267.67047119140625,138.72955932617188)"><ns0:path transform="matrix(0.0119,0,0,-0.0119,0,0)" d="M263 689C108 689 29 566 29 324C29 207 50 106 85 57C120 8 176 -20 238 -20C389 -20 465 110 465 366C465 585 400 689 263 689ZM245 654C342 654 381 556 381 316C381 103 343 15 251 15C154 15 113 116 113 360C113 571 150 654 245 654Z" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" fill="rgb(0,0,0)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g></ns0:g>ns0:g<ns0:g transform="matrix(1,0,0,1,278.02276611328125,135.72726440429688)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M555 243L555 299L51 299L51 243Z" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" fill="rgb(0,0,0)" fill-opacity="1" /></ns0:g></ns0:g>ns0:g<ns0:g transform="matrix(1,0,0,1,291.70458984375,135.72726440429688)"><ns0:path transform="matrix(0.017,0,0,-0.017,0,0)" d="M418 -3L418 27L366 30C311 33 301 44 301 96L301 700L60 598L67 548L217 614L217 96C217 44 206 33 152 30L96 27L96 -3C250 0 250 0 261 0C292 0 402 -3 418 -3Z" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" fill="rgb(0,0,0)" fill-opacity="1" /></ns0:g></ns0:g></ns0:g></ns0:g></ns0:svg></ns0:svg>

The idea is to choose y=1 and apply the Archimedean property, which will tell us that the set N>x={n:n>x} is non empty, and then we allow n0 to be the least element of N>x by the well ordering property of N.

Any real number is sandwiched between two consecutive integers

let xR there exists mZ such that m1x<m.

proof: Let x>0, then by Archimedean property, choosing y=1, the set N>x={n:n>x} is non empty. Therefore, the well ordering property furnishes n0 to be the least element of N>x. which means that n01N>x. Hence, n01x<n0.
if x<0 then, we have n01x<n0. Equivalently, n0+1x>n0 setting z=n0Z We have z+1x>z. In such a case, if z+1>x, we are done, as z+1>xz. if z+1=x, z+2>xz+1, and we are done.
Finally if x=0, 0x<1.


Q is dense in R

let x<yR. There exits qQ such that x<q<y.
proof: First notice that (yx)>0. Hence using Archimedean property, we have nN such that n(yx)>1. Now using the fact that Any real number is sandwiched between two consecutive integers, we have m1nx<m for some mZ. Combining the two inequalities, we have ny>1+nxm hence y>mn. On the other hand, x<mn. Therefore q=mn is the desired q for which x<q<y.


Existence of nth roots in R

For each real x>0 and natural number n there is exactly one real y>0 such that yn=x

proof: WLOG assume that 0<y1<y2 then clearly, y_1{#n} < y_2^n so at most one of y1n and y2n is equal to x.
Now, consider the set T={tR:tn<x}. First, notice that x1+xT, due to the following inequality holding, when 0<x<1 and x>1 as well:

(x1+x)n<xxn1<(1+x)n$$.So$T$isnonempty.Moreover,$1+x$isanupperboundfor$T$as$(1+x)n>x$forany$x>0$.Therefore,$T$hasasupremum,set$y=supT$.Thebigclaimhereisthat$yn=x$.Let$yn<x$.setallow$0<h<1$,and$h<xynn(y+1)n1$.Theidentity$bnan=(ba)i=0naibn1i$.Takingitfromthetop,for$b>a>0$,weknowthat$bn1$isgoingtobelargerthananymultiplicativecombination$aibn1i$.Henceweobtaintheinequality$$bnan<nbn1(ba)

now, setting b=y+h, and a=y, we first notice that

(y+h)nyn<hn(y+h)n1<hn(y+1)n1

the rightmost inequality owing to 0<h<1. Now using h<xynn(y+1)n1, taking the only the ends of the inequality, we have

(y+h)nyn<xyn(y+h)n<x

So clearly, (y+h)T, but y+h>y, contradicting the fact that y is an upper bound for T.

On the other hand, if y>xn, put k=ynxnyn1. Here, 0<k<y if tyk, we have

yntnyn(yk)n<knyn1=ynx

Hence, tn>x therefore tT, yk is an upper bound for T. but yk<y hence contradicting the fact that y is the least upper bound of T.


Extended reals:

We have two extra symbols , +, where each xR has <x<+. We have the following definitions:

Complex field

the field of complex numbers C is just R2 with vector addition, and a special multiplication we are all familiar with. To show field structure is left for the reader.
if z=a+ibC the conjugate of z, z¯=aib which is a reflection about the real axis.
We know for example that the conjugate distributes over + and , and that the double conjugate is the identity transform.
The norm of a complex number is given by the positive square root of zz¯ which is a positive real number.
The norm distributes over and has a triangle inequality over +, namely |z+w||z|+|w|.

Complex Cauchy Schwarz inequality:

Cauchy Schwarz inequality

If a1,,an and b1,,bn are complex numbers, then

\left|\sum_{j=1}{#n} a_j b_j\right|^2 \leq \sum_{j=1}^n\left|a_j\right|^2 \sum_{j=1}^n\left|b_j\right|^2

proof: Put A=Σ|aj|2,B=Σ|bj|2,C=Σajbj (in all sums in this proof, j runs over the values 1,,n ). If B=0, then b1==bn=0, and the conclusion is trivial. Assume therefore that B>0. By Theorem 1.31 we have

|BajCbj|2=(BajCbj)(Ba¯jCbj)=B2|aj|2BC¯ajb¯jBCa¯jbj+|C|2|bj|2=B2AB|C|2=B(AB|C|2)

Since each term in the first sum is nonnegative, we see that

B(AB|C|2)0

Since B>0, it follows that AB|C|20. This is the desired inequality.


EUCLIDEAN SPACES

Euclidean spaces

For each positive integer k, let Rk be the set of all ordered k-tuples

x=(x1,x2,,xk)

where xi,,xk are real numbers, called the coordinates of x. The elements of Rk are called points, or vectors, especially when k>1. We shall denote vectors by boldfaced letters. If y=(y1,,yk) and if α is a real number, put

x+y=(x1+y1,,xk+yk)αx=(αx1,,αxk)

so that x+yRk and αxRk. This defines addition of vectors, as well as multiplication of a vector by a real number (a scalar). These two operations satisfy the commutative, associative, and distributive laws (the proof is trivial, in view of the analogous laws for the real numbers) and make Rk into a vector space over the real field. The zero element of Rk (sometimes called the origin or the null vector) is the point 0 , all of whose coordinates are 0.
We also define the so-called "inner product" (or scalar product) of x and y by

xy=i=1kxiyi

and the norm of x by

|x|=(xx)1/2=(1kxi2)1/2

The structure now defined (the vector space Rk with the above inner product and norm) is called euclidean k-space.

Properties of Euclidean norm

Suppose x,y,zRk, and α is real. Then
(a) |x|0
(b) |x|=0 if and only if x=0;
(c) |αx|=|α||x|;
(d) |xy||x||y|;
(e) |x+y||x|+|y|;
(f) |xz||xy|+|yz|.


Cardinality